# Body Fat Percentage Estimation Chart

Percent Body Fat estimated according to Durnin and Womersley (1974)
Male of Age in Years
Sum of four
Skinfolds mm 17-29 30 39 40 49 50 - 72
15 4.8
20 8.1 12.2 12.2 12.6
25 10.5 14.2 15.0 15.6
30 12.9 16.2 17.7 18.6
35 14.7 17.7 19.6 20.8
40 16.4 19.2 21.4 22.9
45 17.7 20.4 23.0 24.7
50 19.0 21.5 24.6 26.5
55 20.1 22.5 25.9 27.9
60 21.2 23.5 27.1 29.2
65 22.2 24.3 28.2 30.4
70 23.1 25.1 29.3 31.6
75 24.0 25.9 30.3 32.7
80 24.8 26.6 31.2 33.8
85 25.5 27.2 32.1 34.8
90 26.2 27.8 33.0 35.8
95 26.9 28.4 33.7 36.6
100 27.6 29.0 34.4 37.4
105 28.2 29.6 35.1 38.2
110 28.8 30.1 35.8 39.0
115 29.4 30.6 36.4 39.7
120 30.0 31.1 37.0 40.4
125 30.5 31.5 37.6 41.1
130 31.0 31.9 38.2 41.8
135 31.5 32.3 38.7 42.4
140 32.0 32.7 39.2 43.0
145 32.5 33.1 39.7 43.6
150 32.9 33.5 40.2 44.1
155 33.3 33.9 40.7 44.6
160 33.7 34.3 41.2 45.1
165 34.1 34.6 41.6 45.6
170 34.5 34.8 42.0 46.1
175 34.9
180 35.3
185 35.6
190 35.9
195
200
205
210
For intermediate values, use linear interpolation: For a 35 year old male with a sum of 52 mm, the value for 50 mm is
21.5 and for 55 mm is 22.5. The difference is 1. The value you want is 21.5 + [{(52 50)/(55-50)} * (22.5 21.5)] = 21.9
In general, take the table value for the lower end of the interval (21.5 for 50 mm for this case), add to that the fraction you
calculate by subtracting the lower sum from your calculated sum (52-50)=2, divided by the difference between intervals
(55-50) = 5; or 2/5 = 0.4. Multiply that value times the difference between the body fat estimates for the lower and upper
end of the intervals (22.5 21.5) = 1; 1 * 0.4 = 0.4; added to 21.5 = 21.9% body fat.
Page 1/2

## Body Fat Percentage Estimation Chart PDF

Favor this template? Just fancy it by voting!
•
•
•
•
•
0.0
Related Forms
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•